Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Methyl 5-fluoro-1*H*-indole-2-carboxylate

William T. A. Harrison, ** H. S. Yathirajan, ** B. V. Ashalatha, ** K. K. Vijaya Raj** and B. Narayana**

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, Mangalore University, Mangalagangotri 574

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study $T=120~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.042 wR factor = 0.110 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The geometrical parameters for the title compound, $C_{10}H_8FNO_2$, are normal. In the crystal structure, the molecules form inversion-symmetry-generated dimeric pairs by way of two $N-H\cdots O$ hydrogen bonds.

Comment

Several indolecarboxylic acid derivatives show biological activity: methyl indole-3-carboxylate, extracted from a marine microorganism (Hu *et al.*, 2005), is cytotoxic against the K562 human leukaemia strain. Methyl indole-2-carboxylic acid may serve as a glycine site antagonist and hence aid in the treatment of human brain injuries (Morzyk-Ociepa *et al.*, 2004). 5-Fluoroindole-3-acetic acid (Antolic *et al.*, 1996) has plantgrowth regulating activity. The crystal structure of methyl indole-2-carboxylate has been deposited [Parsons, S., McNab, H. & Wood, P. (2004). refcode OCAQEP] with the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002). As part of our ongoing research in this area, the structure of the related title compound, (I) (Fig. 1), prepared by the Fischer indole synthesis reaction (Narayana *et al.*, 2005), is now presented.

The geometrical parameters for (I) are consistent with those of the compounds noted above. In particular, methyl indole-2carboxylic acid, (II) (Morzyk-Ociepa et al., 2004), has almost identical geometry to (I). For example, the benzene-ring bond lengths (Å) in (I) are C1-C2 = 1.396 (2) [equivalent value in (II) = 1.390 (2) Å, C2-C3 = 1.375 (2) [1.372 (2)], C3-C4 =1.399(2)[1.404(2)], C4-C5 = 1.356(2)[1.357(2)], C5-C6 =1.408(2)[1.409(2)] and C6-C1 = 1.416(2)[1.403(2)]. Apart from the methyl H atoms, the molecule in (I) is essentially planar [r.m.s. deviation of the non-H atoms from the mean plane = 0.031 Å, max. = 0.0327 (11) Å for N1]. The bond angle sum about N1 is 359.7°. The crystal packing in (I) exhibits inversion-symmetry-generated dimeric pairs of molecules linked by two $N-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2). A similar pairing arrangement was seen in the structure of methyl indole-2-carboxylate (CSD refcode OCAQEP) although the overall structure is different to (I). Conversely, in methyl indole-2-carboxylic acid (Morzyk-Ociepa et al., 2004) a completely different arrangement of N-H···O and O-H···O hydrogen bonds leads to chains of molecules. There are no π - π stacking interactions in (I), the shortest intermolecular ring-centroid separation being 4.35 Å.

doi:10.1107/S1600536806031448

© 2006 International Union of Crystallography All rights reserved Received 8 August 2006

Accepted 9 August 2006

Experimental

Methyl pyruvate-4-fluorophenylhydrazone (2 g, 0.0095 mol) was added to 10 g polyphosphoric acid and continuously stirred for proper mixing. The reaction mass was slowly heated to 353-363 K and maintained for 4 h. The progress of the reaction was monitored by TLC. The reaction mass was cooled and water (100 ml) was added to break up the lumps until it became a slurry. The separated solid was filtered off and washed with water. The dried crude product was charcoalized in ethyl acetate, filtered over hyflo/silica gel, slowly cooled to room temperature and kept overnight with stirring. After recrystallization from ethyl acetate, colourless crystals of (I) were obtained in 60% yield (m.p. 474 K). Analysis found (calculated) for C₁₀H₈FNO₂: C 62.11 (62.18), H 4.09 (4.17), N 7.13 (7.25)%.

Crystal data

$C_{10}H_8FNO_2$	Z = 4
$M_r = 193.17$	$D_x = 1.502 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.4420 (7) Å	$\mu = 0.12 \text{ mm}^{-1}$
b = 3.8185 (1) Å	T = 120 (2) K
c = 18.269 (1) Å	Needle, colourless
$\beta = 100.125 (2)^{\circ}$	$0.41 \times 0.07 \times 0.05 \text{ mm}$
$V = 854.43 (7) \text{ Å}^3$	

10458 measured reflections 1937 independent reflections 1311 reflections with $I > 2\sigma(I)$

 $+(0.0568P)^2$

 $R_{\rm int} = 0.052$ $\theta_{\rm max} = 27.6^{\circ}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min} = 0.952, T_{\max} = 0.994$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0568P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.104P
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1937 reflections	$\Delta \rho_{\text{max}} = 0.23 \text{ e Å}^{-3}$
132 parameters	$\Delta \rho_{\min} = -0.26 \text{ e Å}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.014 (3)
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$N1-H1\cdots O2^{i}$	0.883 (18)	2.019 (18)	2.8555 (18)	157.7 (15)
Symmetry code: (i	-x+1, -y, -z.			

The N-bound H atom was located in a difference map and its position was freely refined with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H atoms were placed in idealized locations (C-H = 0.95-0.99 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl~C})$. The methyl group was rotated about its C-N bond to best fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

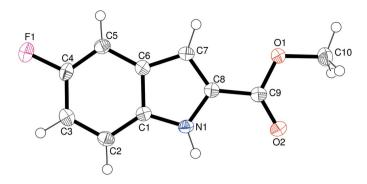


Figure 1 View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.

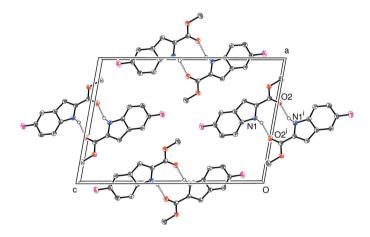


Figure 2 Unit cell packing in (I) with all H atoms except H1 omitted for clarity and hydrogen bonds indicated by dashed lines. See Table 1 for symmetry code.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for data collection. ABV thanks Mangalore University for provision of research facilities.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Antolić, A., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. & Cohen, J. D. (1996). Acta Cryst. B52, 651-661.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin,

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hu, S.-C., Tan, R.-X., Hong, K., Yu, Z.-N. & Zhu, H.-L. (2005). Acta Cryst. E61, o1654-o1656.

Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688,

Narayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638–4644.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.